A239356 Begin with a(0) = 3. Let a(n) for n > 0 be the smallest positive integer not yet in the sequence which forms part of a Primitive Pythagorean Triple (PPT) when paired with a(n-1).
3, 4, 5, 12, 13, 84, 85, 36, 77, 2964, 2573, 3925, 1116, 637, 1285, 893, 924, 43, 925, 372, 997, 497004, 497005, 138204, 82597, 161005, 39973, 155964, 386827, 417085, 258037, 327684, 139763, 356245, 225924, 82643, 240565, 37164, 13573, 39565, 2388, 39637, 26412, 11515, 28813
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A235598.
Programs
-
Mathematica
f[s_List] := Block[{n = s[[-1]]}, sol = Solve[ x^2 + y^2 == z^2 && GCD[x, y, z] == 1 && x > 0 && y > 0 && z > 0 && (x == n || z == n), {x, y, z}, Integers]; Append[s, Min[ Complement[ Union[ Extract[ sol, Position[ sol, _Integer]]], s]]]]; lst = Nest[f, {3}, 25]
Comments