A239374 Smallest product of consecutive distinct prime factors of t = prime(n)^2 - 1 in ascending order that provides more than 1/3 factored parts for Brillhart-Lehmer-Selfridge primality test for prime(n).
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6
Offset: 2
Examples
n = 2: prime(2) = 3, 3^2 - 1 = 8 = 2^3, 2^3 > 3, 100% factorization. So a(2) = 2. n = 45: prime(45) = 197, 197^2 - 1 = 38808 = 2^3*3^2*7^2*11, 2^3 = 8, log_197(8) = 0.3936 > 1/3, 39.36% factorization. So a(45) = 2. n = 99: prime(99) = 523, 523^2 - 1 = 273528 = 2^3*3^2*29*131, 2^3 = 8, log_523(8) = 0.3322 < 1/3, log_523(2^3*3^2) = 0.6832 > 1/3, 68.32% factorization. So a(99) = 6.
Links
- Lei Zhou, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
Table[p = Prime[n]; ck = p^(1/3); sp = p^2 - 1; dp = sp; prod = 1; fp = Union[Transpose[FactorInteger[p + 1]][[1]], Transpose[FactorInteger[p - 1]][[1]]]; i = 0; While[i++; m = fp[[i]]; prod = prod*m; While[Divisible[sp, m], sp = sp/m]; (dp/sp) < ck]; prod, {n, 2, 100}]
Comments