A239399 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.
4, 23, 129, 698, 3805, 20818, 113774, 621754, 3399032, 18582965, 101593258, 555419633, 3036563927, 16601366841, 90762262155, 496211843813, 2712870511114, 14831702705726, 81087325012785, 443317575022163, 2423689199017701, 13250702601112477, 72443743963082659, 396061718589309511
Offset: 1
Keywords
Examples
Some solutions for n=5: ..3..1....0..0....0..3....0..0....3..3....3..3....3..3....3..1....3..1....0..0 ..0..0....3..1....3..3....0..3....3..3....0..0....3..3....0..2....0..2....0..0 ..2..2....2..2....3..2....0..2....3..2....2..0....2..2....0..2....0..2....0..0 ..2..0....2..2....3..1....0..2....0..3....0..3....3..1....2..0....0..0....3..3 ..3..2....3..1....2..0....0..0....2..0....0..2....3..1....0..0....0..2....0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A239405.
Formula
Empirical: a(n) = 9*a(n-1) -28*a(n-2) +74*a(n-3) -181*a(n-4) +236*a(n-5) -261*a(n-6) +234*a(n-7) +200*a(n-8) -279*a(n-9) +104*a(n-10) -268*a(n-11) -36*a(n-12) +156*a(n-13) +104*a(n-14) -32*a(n-15) -16*a(n-16).