cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A239399 Number of n X 2 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

4, 23, 129, 698, 3805, 20818, 113774, 621754, 3399032, 18582965, 101593258, 555419633, 3036563927, 16601366841, 90762262155, 496211843813, 2712870511114, 14831702705726, 81087325012785, 443317575022163, 2423689199017701, 13250702601112477, 72443743963082659, 396061718589309511
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Examples

			Some solutions for n=5:
..3..1....0..0....0..3....0..0....3..3....3..3....3..3....3..1....3..1....0..0
..0..0....3..1....3..3....0..3....3..3....0..0....3..3....0..2....0..2....0..0
..2..2....2..2....3..2....0..2....3..2....2..0....2..2....0..2....0..2....0..0
..2..0....2..2....3..1....0..2....0..3....0..3....3..1....2..0....0..0....3..3
..3..2....3..1....2..0....0..0....2..0....0..2....3..1....0..0....0..2....0..0
		

Crossrefs

Column 2 of A239405.

Formula

Empirical: a(n) = 9*a(n-1) -28*a(n-2) +74*a(n-3) -181*a(n-4) +236*a(n-5) -261*a(n-6) +234*a(n-7) +200*a(n-8) -279*a(n-9) +104*a(n-10) -268*a(n-11) -36*a(n-12) +156*a(n-13) +104*a(n-14) -32*a(n-15) -16*a(n-16).

A239400 Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

8, 105, 1337, 16449, 205969, 2590704, 32507376, 408000104, 5124790809, 64375497505, 808627026775, 10157673828398, 127600254367522, 1602912146570029, 20135780318743491, 252946235316308314
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Column 3 of A239405

Examples

			Some solutions for n=5
..3..1..0....0..0..3....0..0..0....0..0..0....0..3..1....0..0..3....0..3..3
..3..2..0....0..0..0....0..3..1....3..3..0....3..2..1....3..1..2....3..2..3
..3..2..3....3..3..2....0..0..0....2..0..0....2..2..3....2..2..2....2..0..1
..2..2..0....2..2..0....0..3..2....0..0..3....2..2..2....2..2..3....2..2..0
..3..3..2....0..2..0....3..3..0....2..0..0....0..0..0....0..0..2....0..2..2
		

Formula

Empirical recurrence of order 64 (see link above)

A239401 Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

16, 478, 13977, 394509, 11334364, 326882784, 9402398952, 270516990628, 7789048968124, 224284362847360, 6457977012007180, 185957590016422087, 5354807669541831222, 154196812648221842975, 4440254588265618959278
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Column 4 of A239405

Examples

			Some solutions for n=3
..3..3..1..1....3..1..3..3....3..1..3..3....0..0..3..1....3..1..0..0
..2..0..0..2....0..0..3..3....2..1..2..0....3..1..2..1....0..0..0..0
..2..0..2..2....2..1..1..3....0..3..1..0....2..2..2..2....2..2..3..1
		

A239402 Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

32, 2165, 144762, 9340070, 614216271, 40566958960, 2671846338458, 176044655676921, 11610439554314901, 765805659265654829, 50509810922229600429, 3331665731491459450247, 219768507035072764751942
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Column 5 of A239405

Examples

			Some solutions for n=2
..0..3..3..0..0....3..1..0..3..1....3..3..1..3..0....0..0..0..3..1
..3..2..0..1..1....2..1..3..0..0....3..3..1..3..0....3..1..0..0..0
		

A239403 Number of nX6 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

64, 9811, 1504399, 222457036, 33522573911, 5072216819342, 765206237815409, 115478426410506313, 17442858177037612521, 2634917770699112523591, 398013557514665813580770, 60124899058707592070564461
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Column 6 of A239405

Examples

			Some solutions for n=2
..3..1..3..3..0..1....0..0..0..3..1..3....3..1..3..3..1..3....0..3..3..0..1..3
..2..1..2..0..1..0....0..0..0..2..2..3....2..1..3..0..0..0....0..3..3..0..2..3
		

A239404 Number of nX7 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

128, 44399, 15591122, 5277728354, 1820591502437, 630657074443394, 217822754771248124, 75263099558825967756, 26030827849718972763027, 9004105241933423695032678, 3114444338059091764373199789
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Column 7 of A239405

Examples

			Some solutions for n=2
..0..0..0..0..0..0..3....3..1..0..3..3..1..3....3..3..0..0..0..1..3
..0..3..1..0..0..3..3....2..0..1..2..3..2..0....0..0..0..3..1..2..2
		

A239406 Number of 2 X n 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

5, 23, 105, 478, 2165, 9811, 44399, 201006, 909679, 4117547, 18635613, 84347726, 381758761, 1727876419, 7820451787, 35395951502, 160204196803, 725095175067, 3281826924665, 14853766696750, 67229111585533, 304283379907315
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Examples

			Some solutions for n=5:
..3..3..1..3..0....3..1..0..0..3....0..0..3..1..3....3..3..0..0..0
..0..2..0..0..0....2..0..1..1..3....3..3..2..2..2....2..0..0..1..3
		

Crossrefs

Row 2 of A239405.

Formula

Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 18*a(n-3) - 29*a(n-4) + 19*a(n-5) + 38*a(n-6) + 8*a(n-7).
Empirical g.f.: x*(5 + 8*x - 24*x^2 - 23*x^3 + 30*x^4 + 42*x^5 + 8*x^6) / (1 - 3*x - 12*x^2 + 18*x^3 + 29*x^4 - 19*x^5 - 38*x^6 - 8*x^7). - Colin Barker, Oct 26 2018

A239407 Number of 3Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

12, 129, 1337, 13977, 144762, 1504399, 15591122, 161801518, 1677624003, 17403195529, 180479056305, 1871997954119, 19414915574725, 201369918597195, 2088509247416759, 21661501410101827, 224664541142404827
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Row 3 of A239405

Examples

			Some solutions for n=4
..3..3..1..3....3..1..0..0....3..3..1..3....0..3..3..0....0..0..3..3
..0..2..1..3....2..2..3..1....2..2..2..2....0..0..0..3....0..0..0..2
..2..0..1..1....0..2..0..1....2..2..3..1....0..2..0..0....3..3..2..2
		

Formula

Empirical: a(n) = 8*a(n-1) +73*a(n-2) -446*a(n-3) -1413*a(n-4) +8070*a(n-5) +12185*a(n-6) -63420*a(n-7) -49358*a(n-8) +220534*a(n-9) +39486*a(n-10) -241802*a(n-11) +244780*a(n-12) -89648*a(n-13) -386680*a(n-14) -228008*a(n-15) +129984*a(n-16) -457816*a(n-17) -1064416*a(n-18) -330768*a(n-19) +556128*a(n-20) -351872*a(n-21) +769280*a(n-22) +407552*a(n-23) -200704*a(n-24) +32768*a(n-25)

A239408 Number of 4Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

28, 698, 16449, 394509, 9340070, 222457036, 5277728354, 125489197292, 2979675864286, 70809806218933, 1681881988746468, 39960823740980549, 949269180927265463, 22552572727646416085, 535760871479260663596
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Row 4 of A239405

Examples

			Some solutions for n=3
..0..0..0....0..3..3....0..3..3....3..3..0....3..1..3....0..0..3....3..3..0
..0..0..0....3..2..3....3..3..2....0..0..0....2..0..2....3..3..0....0..0..0
..3..1..3....0..0..2....3..1..2....3..2..1....2..0..2....0..3..3....0..0..0
..3..2..0....2..1..3....2..0..2....2..0..0....3..1..3....0..2..2....0..2..1
		

Formula

Empirical recurrence of order 91 (see link above)

A239409 Number of 5Xn 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

66, 3805, 205969, 11334364, 614216271, 33522573911, 1820591502437, 99155297311831, 5390539057008613, 293381673332485198, 15956203146991156417, 868193383242995642964, 47226335011968154541246, 2569370658950018916786902
Offset: 1

Views

Author

R. H. Hardin, Mar 17 2014

Keywords

Comments

Row 5 of A239405

Examples

			Some solutions for n=3
..0..0..3....0..3..1....0..0..3....3..1..0....0..3..1....3..3..0....0..0..0
..3..1..0....3..3..2....0..3..2....2..2..0....3..3..2....0..2..0....0..0..3
..2..0..0....0..3..2....0..3..1....2..0..0....3..1..3....2..1..3....0..0..0
..0..0..2....0..2..2....3..1..3....0..2..0....3..2..3....0..2..2....3..3..2
..0..2..2....2..0..0....2..0..0....0..0..3....2..1..1....0..0..0....3..3..1
		
Showing 1-10 of 13 results. Next