This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239429 #23 May 22 2025 10:21:37 %S A239429 175,12635,18445,30275,32585,38885,41125,46235,53165,71785,74935, %T A239429 92645,108115,117775,121625,146125,151655,173635,184765,191765,196175, %U A239429 204505,208705,229775,237965,241255,243635,246365,283115,335755,344365,345485,352625,353395,354445 %N A239429 Numbers n such that n^6+6 and n^6-6 are prime. %C A239429 All numbers are congruent to 35 mod 70. %C A239429 Intersection of A109836 and A239414. %H A239429 Harvey P. Dale, <a href="/A239429/b239429.txt">Table of n, a(n) for n = 1..1000</a> %e A239429 175^6+6 = 28722900390631 is prime and 175^6-6 = 28722900390619 is prime. Thus, 175 is a member of this sequence. %t A239429 Select[Range[35,360000,70],AllTrue[#^6+{6,-6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Nov 22 2020 *) %o A239429 (Python) %o A239429 import sympy %o A239429 from sympy import isprime %o A239429 def TwoBoth(x): %o A239429 for k in range(10**6): %o A239429 if isprime(k**x+x) and isprime(k**x-x): %o A239429 print(k) %o A239429 TwoBoth(6) %Y A239429 Cf. A109836, A239414. %K A239429 nonn %O A239429 1,1 %A A239429 _Derek Orr_, Mar 20 2014