This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239443 #46 Dec 06 2020 02:50:10 %S A239443 1,256,13122,131072,1562500,3359232,34588806,67108864,258280326, %T A239443 400000000,2143588810,1719926784,9788768652,8854734336,20503125000, %U A239443 34359738368,111612119056,66119763456,305704134738,204800000000,453874312332,548758735360,1722841676182,880602513408,3051757812500 %N A239443 a(n) = phi(n^9), where phi = A000010. %C A239443 Number of solutions of the equation GCD(x_1^2 + ... + x_9^2,n)=1 with 0 < x_i <= n. %C A239443 In general, for m>0, Sum_{k=1..n} phi(k^m) ~ 6 * n^(m+1) / ((m+1)*Pi^2). - _Vaclav Kotesovec_, Feb 02 2019 %H A239443 Seiichi Manyama, <a href="/A239443/b239443.txt">Table of n, a(n) for n = 1..10000</a> %H A239443 C. Calderón, J. M. Grau, A. Oller-Marcén, and László Tóth, <a href="http://arxiv.org/abs/1403.7878">Counting invertible sums of squares modulo n and a new generalization of Euler totient function</a>, arXiv:1403.7878 [math.NT], 2014. %F A239443 Dirichlet g.f.: zeta(s - 9) / zeta(s - 8). The n-th term of the Dirichlet inverse is n^8 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - _Álvar Ibeas_, Nov 24 2017 %F A239443 a(n) = n^8 * phi(n). - _Altug Alkan_, Mar 10 2018 %F A239443 Sum_{k=1..n} a(k) ~ 3*n^10 / (5*Pi^2). - _Vaclav Kotesovec_, Feb 02 2019 %F A239443 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^10 - p^9 - p + 1)) = 1.00399107654133714629... - _Amiram Eldar_, Dec 06 2020 %p A239443 with(numtheory); A239443:=n->phi(n^9); seq(A239443(n), n=1..100); # _Wesley Ivan Hurt_, Apr 01 2014 %t A239443 Table[EulerPhi[n^9], {n, 100}] %o A239443 (PARI) a(n) = n^8*eulerphi(n); \\ _Michel Marcus_, Mar 10 2018 %Y A239443 Defining Phi_k(n):= number of solutions of the equation GCD(x_1^2 + ... + x_k^2,n)=1 with 0 < x_i <= n. %Y A239443 Phi_1(n) = phi(n) = A000010(n). %Y A239443 Phi_2(n) = A079458(n). %Y A239443 Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191(n). %Y A239443 Phi_4(n) = A227499(n). %Y A239443 Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533(n). %Y A239443 Phi_6(n) = A238534(n). %Y A239443 Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442(n). %Y A239443 Phi_8(n) = A239441(n). %Y A239443 Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443(n). %K A239443 nonn,mult %O A239443 1,2 %A A239443 _José María Grau Ribas_, Mar 22 2014