cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239451 a(n) = |{1 < k < sqrt(n)*log(n): prime(n) + C(prime(k)-1, (prime(k)-1)/2) is prime}|, where C(2j,j) = (2j)!/(j!)^2.

Original entry on oeis.org

0, 0, 0, 0, 2, 1, 4, 1, 3, 4, 2, 2, 6, 1, 5, 6, 6, 3, 4, 2, 3, 2, 4, 6, 5, 6, 3, 5, 4, 3, 4, 7, 8, 4, 3, 4, 6, 4, 6, 7, 8, 4, 10, 5, 6, 3, 2, 3, 7, 4, 5, 8, 3, 7, 9, 5, 8, 3, 9, 5, 2, 4, 5, 6, 5, 6, 5, 3, 11, 7, 6, 7, 6, 4, 6, 6, 7, 6, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 19 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 4.
(ii) For any integer n > 4, there is an odd prime p < prime(n) with n*C(p-1,(p-1)/2) + 1 prime.
(iii) For every n = 2, 3, ..., there is a positive integer k < 5*sqrt(n)/3 with n*C(2*k,k) - 1 prime.
(iv) For any integer n > 1, k!*n - 1 (or k!*n + 1) is prime for some k = 1, ..., n.
We have verified that a(n) > 0 for all n = 5, ..., 10^7.

Examples

			a(6) = 1 since prime(6) + C(prime(3)-1, (prime(3)-1)/2) = 13 + C(4, 2) = 13 + 6 = 19 is prime.
a(8) = 1 since prime(8) + C(prime(5)-1, (prime(5)-1)/2) = 19 + C(10, 5) = 19 + 252 = 271 is prime.
a(14) = 1 since prime(14) + C(prime(6)-1, (prime(6)-1)/2) = 43 + C(12, 6) = 43 + 924 = 967 is prime.
a(7597) = 1 since prime(7597) + C(prime(686)-1, (prime(686)-1)/2) = 77323 + C(5146, 2573) is prime.
a(193407) = 2 since prime(193407) + C(prime(3212)-1, (prime(3212)-1)/2) =  2652113 + C(29586, 14793) and prime(193407) + C(prime(5348)-1, (prime(5348)-1)/2) = 2652113 + C(52312, 26156) are both prime.
a(4517422) > 0 since prime(4517422) + C(prime(6918)-1, (prime(6918)-1)/2) = 77233291 + C(69778, 34889) is prime.
a(4876885) > 0 since prime(4876885) + C(prime(8904)-1, (prime(8904)-1)/2) = 83778493 + C(92202, 46101) is prime.
a(5887242) > 0 since prime(5887242) + C(prime(5678)-1, (prime(5678)-1)/2) = 102316597 + C(55930, 27965) is prime.
a(8000871) > 0 since prime(8000871) + C(prime(4797)-1, (prime(4797)-1)/2) = 141667111 + C(46410, 23205) is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_,k_]:=PrimeQ[Prime[n]+Binomial[Prime[k]-1,(Prime[k]-1)/2]]
    a[n_]:=Sum[If[p[n,k],1,0],{k,2,Ceiling[Sqrt[n]*Log[n]]-1}]
    Table[a[n],{n,1,80}]