A239454 Array: row n shows the Look-and-Say partitions of n >=1, in Mathematica order.
1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 1, 1, 3, 3, 3, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 1, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2, 2, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1
Offset: 1
Examples
Look at the partition p = 5442111 as 1*5 + 2*4 + 1*2 + 3*1, which equals 5*1 + 4*2 + 3*2 + 1*3, for which we can say LS(p) = 3221111111. The 11 partitions of 6 generate Look-and-Say partitions as follows: 6 -> 111111 51 -> 111111 42 -> 111111 411 -> 21111 33 -> 222 321 -> 111111 3111 -> 3111 222 -> 33 2211 -> 222 21111 -> 411 111111 -> 6, so that row 6 results from arranging in Mathematica order the partitions 111111, 21111, 222, 3111, 33, 411, 6, as 6, 411, 33, 3111, 222, 21111, 111111. Following are the first 6 rows: 1 2 1 1 3 1 1 1 4 2 2 2 1 1 1 1 1 1 5 3 1 1 2 2 1 2 1 1 1 1 1 1 1 1 6 4 1 1 3 3 3 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*) Flatten[t](*A239454,sequence*) Map[Length[LS[#]] &, Range[30]](*A239455*) (* Peter J. C. Moses, Mar 18 2014 *)
Comments