A239467 Number of 1-separable partitions of n; see Comments.
0, 0, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 50, 62, 78, 96, 120, 147, 181, 220, 270, 327, 397, 478, 578, 693, 833, 994, 1189, 1414, 1683, 1994, 2365, 2792, 3297, 3880, 4568, 5359, 6287, 7354, 8602, 10036, 11704, 13618, 15841, 18387, 21332, 24702, 28591
Offset: 1
Examples
(1,0)-separable partitions of 7: 421, 313; (1,1)-separable partitions of 7: 61, 3121; (1,2)-separable partitions of 7: 151, 12121; 1-separable partitions of 7: 421, 313, 61, 3121, 151, 12121, so that a(7) = 6.
Programs
-
Mathematica
z = 55; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 1] <= Length[p] + 1], {n, 1, z}] (* A239467 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2] <= Length[p] + 1], {n, 1, z}] (* A239468 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 3] <= Length[p] + 1], {n, 1, z}] (* A239469 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 4] <= Length[p] + 1], {n, 1, z}] (* A239470 *) t5 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 5] <= Length[p] + 1], {n, 1, z}] (* A239472 *)
Comments