A239468 Number of 2-separable partitions of n; see Comments.
0, 0, 1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 31, 39, 47, 59, 71, 87, 105, 128, 153, 185, 221, 265, 315, 377, 445, 530, 625, 739, 870, 1025, 1201, 1411, 1649, 1930, 2249, 2625, 3050, 3549, 4116, 4773, 5523, 6391, 7375, 8515, 9806, 11293, 12980, 14917, 17110
Offset: 1
Examples
(2,0)-separable partitions of 7: 421, 12121; (2,1)-separable partitions of 7: 52; (2,2)-separable partitions of 7: 232; 2-separable partitions of 7: 421, 12121, 52, 232, so that a(7) = 4.
Programs
-
Mathematica
z = 55; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 1] <= Length[p] + 1], {n, 1, z}] (* A239467 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2] <= Length[p] + 1], {n, 1, z}] (* A239468 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 3] <= Length[p] + 1], {n, 1, z}] (* A239469 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 4] <= Length[p] + 1], {n, 1, z}] (* A239470 *) t5 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 5] <= Length[p] + 1], {n, 1, z}] (* A239472 *)
Comments