A239469 Number of 3-separable partitions of n; see Comments.
0, 0, 0, 1, 2, 1, 3, 4, 5, 6, 8, 11, 13, 15, 20, 24, 30, 35, 43, 52, 63, 74, 89, 106, 127, 148, 177, 208, 246, 287, 338, 396, 464, 538, 630, 732, 853, 985, 1145, 1324, 1532, 1765, 2038, 2345, 2702, 3098, 3562, 4081, 4679, 5348, 6120, 6987, 7978, 9087, 10359
Offset: 1
Examples
(3,0)-separable partitions of 7: 232; (3,1)-separable partitions of 7: 43; (3,2)-separable partitions of 7: 3231; 3-separable partitions of 7: 232, 43, 3231, so that a(7) = 3.
Programs
-
Mathematica
z = 55; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 1] <= Length[p] + 1], {n, 1, z}] (* A239467 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2] <= Length[p] + 1], {n, 1, z}] (* A239468 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 3] <= Length[p] + 1], {n, 1, z}] (* A239469 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 4] <= Length[p] + 1], {n, 1, z}] (* A239470 *) t5 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 5] <= Length[p] + 1], {n, 1, z}] (* A239472 *)
Comments