This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239472 #40 May 22 2025 10:21:37 %S A239472 2,3,3,7,3,0,0,0,0,7,7,0,4,0,8,11,3,16,15,0,4,7,0,23,0,19,12,11,3,0,3, %T A239472 7,12,0,12,0,0,0,0,0,16,0,0,0,59,11,44,32,16,0,0,0,3,0,23,0,20,75,3,0, %U A239472 28,0,0,0,36,0,60,0,0,0,36,0,0,0,0,19,0,0,0,0,0,91,75,0,0,0,32,108,7,0,60,0,40,39,0,0,0,0,80 %N A239472 Least number k such that k^n-(k-1)^n-...-3^n-2^n is prime. a(n) = 0 if no such number exists. %C A239472 a(n) = 0 for n = {6, 7, 8, 9, 12, 14, 20, 23, 25, ...} because for k large enough, k^n-(k-1)^n-...-3^n-2^n < 0. Thus, no number will be prime. %C A239472 See A240083 for the n-values with nonzero entries. %H A239472 Robert Israel, <a href="/A239472/b239472.txt">Table of n, a(n) for n = 1..1000</a> %e A239472 2^2 = 4 is not prime. 3^2-2^2 = 5 is prime. Thus, a(2) = 3. %e A239472 2^3 = 8 is not prime. 3^3-2^3 = 19 is prime. Thus, a(3) = 3. %p A239472 f:= proc(n) local x, r, k; %p A239472 r:= 0; x:= 2^n; %p A239472 for k from 3 do %p A239472 r:= r + (k-1)^n; %p A239472 x:= k^n - r; %p A239472 if x < 2 then return 0 fi; %p A239472 if isprime(x) then return k fi; %p A239472 od %p A239472 end proc: %p A239472 f(1):= 2: %p A239472 map(f, [$1..100]); # _Robert Israel_, Jan 03 2024 %o A239472 (Python) %o A239472 import sympy %o A239472 from sympy import isprime %o A239472 def Lep(n): %o A239472 for k in range(2*10**3): %o A239472 num = k**n %o A239472 for i in range(2,k): %o A239472 num -= i**n %o A239472 if num < 0: %o A239472 return None %o A239472 if isprime(num): %o A239472 return k %o A239472 n = 1 %o A239472 while n < 100: %o A239472 if Lep(n) == None: %o A239472 print(0) %o A239472 else: %o A239472 print(Lep(n)) %o A239472 n += 1 %o A239472 (PARI) a(n)=k=1;while((s=k^n-sum(i=2,k-1,i^n))>0,if(isprime(s),return(k));k++) %o A239472 for(n=1,100,print1(a(n),", ")) \\ _Derek Orr_, Mar 12 2015 %Y A239472 Cf. A240083. %K A239472 nonn %O A239472 1,1 %A A239472 _Derek Orr_, Mar 31 2014