A239481 Number of partitions p of n such that if h = 2*min(p), then h is an (h,2)-separator of p; see Comments.
0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 2, 1, 2, 3, 4, 5, 7, 6, 9, 13, 13, 17, 22, 25, 32, 39, 43, 55, 67, 78, 93, 113, 132, 158, 191, 217, 260, 308, 357, 424, 498, 576, 676, 792, 916, 1069, 1244, 1436, 1666, 1934, 2225, 2573, 2971, 3410, 3932, 4524, 5183, 5951, 6826
Offset: 1
Examples
a(10) counts these partitions: 424, 23212.
Programs
-
Mathematica
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] + 1], {n, 1, z}] (* A239729 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] + 1], {n, 1, z}] (* A239481 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p]] == Length[p] + 1], {n, 1, z}] (* A239456 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] + 1], {n, 1, z}] (* A239499 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] + 1], {n, 1, z}] (*A239689 *)
Comments