A239482 Number of (2,0)-separable partitions of n; see Comments.
0, 1, 0, 1, 2, 2, 3, 5, 5, 7, 10, 11, 14, 19, 21, 27, 34, 39, 48, 60, 69, 84, 102, 119, 142, 172, 199, 237, 282, 328, 387, 458, 530, 623, 730, 847, 987, 1153, 1331, 1547, 1796, 2071, 2394, 2771, 3183, 3671, 4227, 4849, 5568, 6395, 7313, 8377, 9584, 10940
Offset: 3
Examples
The (2,0)-separable partitions of 10 are 721, 523, 424, 42121, 1212121, so that a(10) = 5.
Programs
-
Mathematica
z = 65; -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 1] == Length[p] - 1], {n, 2, z}] (* A165652 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2] == Length[p] - 1], {n, 3, z}] (* A239482 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 3] == Length[p] - 1], {n, 4, z}] (* A239483 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 4] == Length[p] - 1], {n, 5, z}] (* A239484 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 5] == Length[p] - 1], {n, 6, z}] (* A239485 *)
Comments