A239483 Number of (3,0)-separable partitions of n; see Comments.
0, 1, 1, 1, 1, 3, 3, 4, 5, 7, 8, 10, 12, 16, 18, 22, 26, 33, 38, 45, 53, 65, 75, 89, 103, 124, 143, 168, 195, 230, 265, 309, 357, 418, 479, 556, 639, 742, 850, 979, 1122, 1294, 1478, 1696, 1935, 2220, 2528, 2889, 3287, 3752, 4261, 4850, 5502, 6257, 7084
Offset: 4
Examples
The (3,0)-separable partitions of 11 are 731, 632, 434, 23231, so that a(11) = 4.
Programs
-
Mathematica
z = 65; -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 1] == Length[p] - 1], {n, 2, z}] (* A165652 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2] == Length[p] - 1], {n, 3, z}] (* A239482 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 3] == Length[p] - 1], {n, 4, z}] (* A239483 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 4] == Length[p] - 1], {n, 5, z}] (* A239484 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 5] == Length[p] - 1], {n, 6, z}] (* A239485 *)
Comments