A239484 Number of (4,0)-separable partitions of n; see Comments.
0, 1, 1, 2, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 19, 22, 26, 31, 36, 42, 51, 58, 68, 79, 92, 107, 125, 143, 165, 191, 221, 253, 293, 333, 383, 440, 503, 574, 657, 747, 853, 971, 1105, 1253, 1427, 1616, 1833, 2076, 2349, 2655, 3006, 3389, 3826, 4313, 4861
Offset: 5
Examples
The (4,0)-separable partitions of 12 are 741, 642, 543, 24141, so that a(12) = 4.
Programs
-
Mathematica
z = 65; -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 1] == Length[p] - 1], {n, 2, z}] (* A165652 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2] == Length[p] - 1], {n, 3, z}] (* A239482 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 3] == Length[p] - 1], {n, 4, z}] (* A239483 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 4] == Length[p] - 1], {n, 5, z}] (* A239484 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 5] == Length[p] - 1], {n, 6, z}] (* A239485 *)
Comments