A239485 Number of (5,0)-separable partitions of n; see Comments.
0, 1, 1, 2, 2, 2, 2, 4, 4, 6, 7, 8, 9, 12, 13, 16, 19, 22, 25, 31, 34, 41, 47, 54, 62, 74, 82, 96, 110, 126, 143, 167, 187, 216, 245, 279, 316, 364, 408, 466, 527, 597, 673, 767, 860, 976, 1098, 1238, 1391, 1574, 1761, 1986, 2228, 2502, 2801, 3150, 3518
Offset: 6
Examples
The (5,0)-separable partitions of 13 are 751, 652, 454, 15151, so that a(13) = 4.
Programs
-
Mathematica
z = 65; -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 1] == Length[p] - 1], {n, 2, z}] (* A165652 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2] == Length[p] - 1], {n, 3, z}] (* A239482 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 3] == Length[p] - 1], {n, 4, z}] (* A239483 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 4] == Length[p] - 1], {n, 5, z}] (* A239484 *) -1 + Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 5] == Length[p] - 1], {n, 6, z}] (* A239485 *)
Comments