A239497 Number of partitions p of n such that if h = min(p), then h is an (h,1)-separator of p; see Comments.
0, 0, 1, 1, 2, 3, 4, 5, 7, 9, 11, 15, 17, 22, 28, 34, 40, 52, 60, 75, 90, 109, 129, 160, 186, 225, 268, 321, 376, 455, 530, 632, 743, 878, 1028, 1219, 1416, 1667, 1947, 2281, 2648, 3103, 3593, 4189, 4857, 5638, 6516, 7564, 8715, 10080, 11614, 13394, 15392
Offset: 1
Examples
a(7) counts these partitions: 61, 52, 43, 3211.
Programs
-
Mathematica
z = 35; t1 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}] (* A239497 *) t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *) t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *) t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *) t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}] (* A239501 *)
Comments