A239498 Number of partitions p of n such that if h = 2*min(p), then h is an (h,1)-separator of p; see Comments.
0, 0, 1, 0, 0, 2, 0, 1, 3, 1, 2, 5, 4, 4, 8, 7, 9, 15, 15, 18, 23, 26, 32, 43, 47, 57, 72, 80, 98, 120, 138, 163, 198, 227, 267, 323, 372, 438, 517, 596, 696, 818, 944, 1098, 1282, 1477, 1711, 1989, 2285, 2637, 3049, 3496, 4023, 4633, 5303, 6080, 6976, 7968
Offset: 1
Examples
a(9) counts these partitions: 63, 4212, 212121.
Programs
-
Mathematica
z = 35; t1 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}] (* A239497 *) t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *) t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *) t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *) t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}] (* A239501 *)
Comments