A239499 Number of partitions p of n such that if h = (number of parts of p), then h is an (h,2)-separator of p; see Comments.
0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 9, 9, 11, 12, 14, 15, 17, 18, 20, 22, 24, 26, 29, 31, 34, 37, 40, 43, 48, 51, 56, 61, 67, 72, 80, 86, 94, 102, 111, 119, 131, 140, 152, 164, 178, 190, 207, 221, 239
Offset: 1
Examples
a(19) counts these 3 partitions: [3,13,3], [5,3,5,1,5], [5,2,5,2,5].
Programs
-
Mathematica
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] + 1], {n, 1, z}] (* A239729 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] + 1], {n, 1, z}] (* A239481 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p]] == Length[p] + 1], {n, 1, z}] (* A239456 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] + 1], {n, 1, z}] (* A239499 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] + 1], {n, 1, z}] (*A239689 *)
Comments