A239501 Number of partitions p of n such that if h = max(p) - min(p), then h is an (h,1)-separator of p; see Comments.
0, 0, 1, 0, 0, 2, 0, 1, 2, 0, 3, 3, 2, 2, 3, 5, 4, 8, 4, 5, 9, 6, 13, 10, 11, 15, 14, 17, 16, 20, 21, 26, 29, 30, 33, 36, 35, 41, 47, 47, 61, 61, 66, 71, 73, 85, 88, 98, 102, 114, 122, 131, 148, 154, 163, 182, 188, 205, 220, 231, 249, 271, 293, 306, 338, 359
Offset: 1
Examples
a(11) counts these partitions: 4313, 4232, 321212.
Programs
-
Mathematica
z = 35; t1 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}] (* A239497 *) t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *) t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *) t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *) t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}] (* A239501 *)
Comments