This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239503 #16 Jan 09 2025 18:34:26 %S A239503 3,1515,1689,3327,4461,4641,4965,5043,5583,5709,6183,7089,9291,9369, %T A239503 9699,10125,11109,14175,15081,18393,20295,26955,27009,27219,29067, %U A239503 30513,30807,35355,35889,36003,37935,40107,43461,48045,49005,51783,53289,55527,58833,61203 %N A239503 Numbers n such that n^8+8 and n^8-8 are prime. %C A239503 All numbers are congruent to 3 mod 6. %C A239503 Intersection of A239345 and A239416. %e A239503 3^8+8 = 6569 is prime and 3^8-8 = 6553 is prime. Thus, 3 is a member of this sequence. %t A239503 Select[Range[3,62000,6],AllTrue[#^8+{8,-8},PrimeQ]&](* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 07 2020 *) %o A239503 (Python) %o A239503 import sympy %o A239503 from sympy import isprime %o A239503 def TwoBoth(x): %o A239503 for k in range(10**6): %o A239503 if isprime(k**x+x) and isprime(k**x-x): %o A239503 print(k) %o A239503 TwoBoth(8) %Y A239503 Cf. A239345, A239416. %K A239503 nonn %O A239503 1,1 %A A239503 _Derek Orr_, Mar 20 2014