This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239505 #10 May 22 2025 10:21:37 %S A239505 2,1642,2870,2948,4238,5480,5920,7502,8210,8248,9328,11572,13538, %T A239505 13610,14818,14908,19298,21022,21890,21988,22340,23000,23252,26282, %U A239505 26380,29168,31660,32602,33338,33650,36220,38248,38422,43490,43910,44948,45188,46048 %N A239505 Numbers n such that n^9+9 and n^9-9 are prime. %C A239505 All numbers in this sequence are even. %C A239505 Intersection of A239346 and A239417. %H A239505 Harvey P. Dale, <a href="/A239505/b239505.txt">Table of n, a(n) for n = 1..1000</a> %e A239505 2^9+9 = 521 is prime and 2^9-9 = 503 is prime. Thus, 2 is a member of this sequence. %t A239505 Select[Range[50000],AllTrue[#^9+{9,-9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 12 2015 *) %o A239505 (Python) %o A239505 import sympy %o A239505 from sympy import isprime %o A239505 def TwoBoth(x): %o A239505 for k in range(10**6): %o A239505 if isprime(k**x+x) and isprime(k**x-x): %o A239505 print(k) %o A239505 TwoBoth(9) %Y A239505 Cf. A239346, A239417. %K A239505 nonn %O A239505 1,1 %A A239505 _Derek Orr_, Mar 20 2014