cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239505 Numbers n such that n^9+9 and n^9-9 are prime.

This page as a plain text file.
%I A239505 #10 May 22 2025 10:21:37
%S A239505 2,1642,2870,2948,4238,5480,5920,7502,8210,8248,9328,11572,13538,
%T A239505 13610,14818,14908,19298,21022,21890,21988,22340,23000,23252,26282,
%U A239505 26380,29168,31660,32602,33338,33650,36220,38248,38422,43490,43910,44948,45188,46048
%N A239505 Numbers n such that n^9+9 and n^9-9 are prime.
%C A239505 All numbers in this sequence are even.
%C A239505 Intersection of A239346 and A239417.
%H A239505 Harvey P. Dale, <a href="/A239505/b239505.txt">Table of n, a(n) for n = 1..1000</a>
%e A239505 2^9+9 = 521 is prime and 2^9-9 = 503 is prime. Thus, 2 is a member of this sequence.
%t A239505 Select[Range[50000],AllTrue[#^9+{9,-9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 12 2015 *)
%o A239505 (Python)
%o A239505 import sympy
%o A239505 from sympy import isprime
%o A239505 def TwoBoth(x):
%o A239505   for k in range(10**6):
%o A239505     if isprime(k**x+x) and isprime(k**x-x):
%o A239505       print(k)
%o A239505 TwoBoth(9)
%Y A239505 Cf. A239346, A239417.
%K A239505 nonn
%O A239505 1,1
%A A239505 _Derek Orr_, Mar 20 2014