cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239506 Numbers n such that n^10+10 and n^10-10 are prime.

This page as a plain text file.
%I A239506 #9 May 22 2025 10:21:37
%S A239506 4983,105369,113289,150051,191829,208131,277167,305349,363957,400323,
%T A239506 494241,541233,577269,656271,668547,995247,1141503,1218261,1360623,
%U A239506 1494537,1501863,1528857,1531959,1534533,1535919,1621653,1651551,1864863,1950597,1969539,2130513
%N A239506 Numbers n such that n^10+10 and n^10-10 are prime.
%C A239506 All numbers are congruent to 33 mod 66.
%C A239506 Intersection of A239347 and A239418.
%e A239506 4983^10+10 = 9438628041688305771192954743294050459 is prime and 4983^10-10 = 9438628041688305771192954743294050439 is prime. Thus, 4983 is a member of this sequence.
%t A239506 Select[Range[22*10^5],AllTrue[#^10+{10,-10},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 04 2018 *)
%o A239506 (Python)
%o A239506 import sympy
%o A239506 from sympy import isprime
%o A239506 def TwoBoth(x):
%o A239506   for k in range(10**8):
%o A239506     if isprime(k**x+x) and isprime(k**x-x):
%o A239506       print(k)
%o A239506 TwoBoth(10)
%Y A239506 Cf. A239347, A239418.
%K A239506 nonn
%O A239506 1,1
%A A239506 _Derek Orr_, Mar 20 2014