A239511 Number of partitions p of n such that if h = 2*min(p), then h is an (h,0)-separator of p; see Comments.
1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 7, 9, 10, 11, 16, 17, 21, 26, 30, 38, 46, 53, 63, 76, 89, 106, 128, 149, 176, 210, 245, 287, 339, 392, 463, 542, 628, 733, 854, 989, 1150, 1336, 1542, 1782, 2063, 2373, 2736, 3155, 3620, 4162, 4783, 5476, 6275, 7185, 8210
Offset: 1
Examples
a(9) counts these 4 partitions: 612, 513, 324, 31212.
Programs
-
Mathematica
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] - 1], {n, 1, z}] (* A239510 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] - 1], {n, 1, z}] (* A239511 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p] - 1], {n, 1, z}] (* A237828 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] - 1], {n, 1, z}] (* A239513 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] - 1], {n, 1, z}] (* A239514 *)
Comments