A239512 Irregular triangular array read by rows: row n gives a list of the partitions of the Lucas numbers.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1
Offset: 1
Examples
The first 7 rows: 1 1 1 3 1 1 1 4 3 1 1 1 1 1 4 1 3 1 1 1 1 1 1 1 4 1 1 3 3 3 1 1 1 1 1 1 1 1 1 7 4 3 4 1 1 1 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 The first 7 rows represent these partitions: 1 11 3, 111 4, 31, 1111 41, 311, 11111 411, 33, 3111, 111111 7, 43, 431, 41111, 3311, 311111, 1111111
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
LucasQ[n_] := IntegerQ[Sqrt[5 n^2 + 20]] || IntegerQ[Sqrt[5 n^2 - 20]]; Attributes[LucasQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ LucasQ[#] &] &, Range[0, 12]]] (* A239512, partitions *) Flatten[t] (* A067592 *) (* Peter J. C. Moses, Mar 24 2014 *)
Comments