A239513 Number of partitions p of n such that if h = (number of parts of p), then h is an (h,0)-separator of p; see Comments.
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 25, 27, 31, 35, 40, 44, 50, 55, 62, 68, 76, 83, 93, 101, 112, 122, 136, 147, 163, 177, 196, 213, 235, 255, 281, 305, 335, 363, 398, 431, 471, 510, 556, 601, 654, 706, 768, 828
Offset: 1
Examples
a(13) counts these 5 partitions: 931, 832, 634, 535, 15151.
Programs
-
Mathematica
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] - 1], {n, 1, z}] (* A239510 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] - 1], {n, 1, z}] (* A239511 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p] - 1], {n, 1, z}] (* A237828 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] - 1], {n, 1, z}] (* A239513 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] - 1], {n, 1, z}] (* A239514 *)
Comments