A239514 Number of partitions p of n such that if h = max(p) - min(p), then h is an (h,0)-separator of p; see Comments.
0, 0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 4, 2, 7, 6, 7, 6, 10, 7, 14, 12, 18, 12, 22, 18, 23, 23, 31, 29, 42, 33, 45, 42, 54, 49, 68, 62, 78, 76, 95, 87, 110, 102, 124, 128, 150, 141, 178, 174, 203, 203, 237, 228, 272, 269, 308, 318, 360, 356, 422, 420, 472, 482
Offset: 1
Programs
-
Mathematica
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] - 1], {n, 1, z}] (* A239510 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] - 1], {n, 1, z}] (* A239511 *) Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p] - 1], {n, 1, z}] (* A237828 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] - 1], {n, 1, z}] (* A239513 *) Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] - 1], {n, 1, z}] (* A239514 *)
Formula
a(12) counts these partitions: 615, 642, 43131, 3121212.
Comments