A239518 Number of partitions p of n that are separable by the number of parts of p; see Comments.
0, 0, 1, 0, 2, 2, 3, 3, 3, 5, 6, 7, 8, 9, 11, 13, 15, 17, 20, 22, 25, 28, 32, 36, 42, 45, 52, 57, 65, 71, 81, 88, 100, 109, 122, 134, 149, 162, 180, 197, 218, 238, 262, 286, 315, 343, 376, 410, 449, 488, 534, 580, 633, 687, 749, 812, 883, 956, 1038, 1123
Offset: 1
Examples
Let h = number of parts of p. The (h,0)-separable partition of 11 are 92, 731, 632, 434; the (h,1)-separable partition is 2414; the (h,2)-partition is 353. So, there are 4 + 1 + 1 = 6 h-separable partitions of 11.
Programs
-
Mathematica
z = 75; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239515 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2*Min[p]] <= Length[p] + 1], {n, 1, z}] (* A239516 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Max[p]] <= Length[p] + 1], {n, 1, z}] (* A239517 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, Length[p]] <= Length[p] + 1], {n, 1, z}] (* A239518 *)
Comments