A239537 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.
1, 2, 1, 6, 2, 6, 16, 6, 24, 13, 44, 16, 216, 68, 47, 120, 44, 1536, 1014, 406, 128, 328, 120, 11616, 11108, 13254, 1584, 405, 896, 328, 86400, 131988, 293741, 98304, 7790, 1181, 2448, 896, 645504, 1533792, 7199001, 3785280, 984150, 33630, 3598, 6688, 2448
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..0..1....0..1..2..1..2....0..1..1..2..1....0..1..2..0..2 ..0..1..0..0..1....0..1..2..1..2....0..1..1..2..1....0..1..2..0..2 ..0..2..0..2..1....1..2..2..1..2....0..1..1..0..1....0..1..2..0..2 ..0..2..0..2..1....1..2..2..1..0....2..0..2..0..2....1..0..2..1..2 ..0..2..0..2..1....1..2..2..1..0....2..0..2..0..2....1..0..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..128
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +4*a(n-2) -3*a(n-3)
k=2: [order 10]
k=3: a(n) = 8*a(n-1) +26*a(n-2) -166*a(n-3) +96*a(n-4) +198*a(n-5) -81*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-2)
n=2: a(n) = 2*a(n-1) +2*a(n-2)
n=3: a(n) = 6*a(n-1) +12*a(n-2) -8*a(n-3)
n=4: [order 10]
n=5: [order 37]
n=6: [order 85]
Comments