A239563 Numbers n such that there are a, b with abs(sigma(a) - sigma(b)) = sigma(n) - n and a U b = n, where U is decimal concatenation.
23, 47, 139, 529, 611, 911, 1109, 1445, 1621, 2003, 2521, 2531, 4007, 4361, 4879, 7169, 9011, 9013, 9481, 13009, 18883, 22081, 24257, 25031, 45349, 49901, 56081, 90011, 98941, 99101, 133705, 160031, 169181, 200003, 202289, 210181, 250031, 307289, 336961, 357101
Offset: 1
Examples
For n = 9481 we can consider 9481 = 9 U 481 and sigma(9481) = 10000, sigma(481) = 532, sigma(9) = 13 and 532 - 13 = 519 = 10000 - 9481.
Links
- Paolo P. Lava and Giovanni Resta, Table of n, a(n) for n = 1..207(terms < 3*10^9, first 50 terms from Paolo P. Lava)
Programs
-
Maple
with(numtheory); T:=proc(t) local w,x,y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end: P:=proc(q) local a,b,c,d,i,n; for n from 1 to q do a:=sigma(n); b:=T(n); for i from 1 to b-1 do c:=trunc(n/10^i); d:=n-c*10^i; if abs(sigma(c)-sigma(d))=a-n then print(n); break; fi; od; od; end: P(10^9);