cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239571 Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.

This page as a plain text file.
%I A239571 #25 Sep 08 2022 08:46:07
%S A239571 0,0,27,999,11565,74811,342042,1239525,3799488,10259640,25076952,
%T A239571 56552364,119324403,238062357,452774595,826245798,1454229216,
%U A239571 2479147536,4108199481,6636929805,10479498849,16207085223,24596072424,36687908235,53862785520,77929575480
%N A239571 Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.
%C A239571 Rotations and reflections of placements are counted. If they are to be ignored see A239575.
%H A239571 Vincenzo Librandi, <a href="/A239571/b239571.txt">Table of n, a(n) for n = 3..1000</a>
%H A239571 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)
%F A239571 a(n) = (n -3) * (n -4) * (n^8 +12*n^7 -58*n^6 -860*n^5 +2141*n^4 +23728*n^3 -61316*n^2 -244928*n +770880)/3840.
%F A239571 G.f.: -3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9) / (x-1)^11. - _Colin Barker_, Mar 22 2014
%t A239571 CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 23 2014 *)
%o A239571 (PARI) concat([0,0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ _Colin Barker_, Mar 22 2014
%o A239571 (Magma) [(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // _Vincenzo Librandi_, Mar 23 2014
%Y A239571 Cf. A239567, A239575, A239568 (2 points), A239569 (3 points), A239570 (4 points), A282998 (6 points).
%K A239571 nonn,easy
%O A239571 3,3
%A A239571 _Heinrich Ludwig_, Mar 22 2014