A239573 Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2
Examples
There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4: . X X X X X . X . . . . . . . . . . X . . X . X X . . X . . . X . . . . . . X . . . . . . . X . . . . X . . . X X . . X
Links
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1)
Crossrefs
Programs
-
PARI
concat(0, Vec(-x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1)/((x -1)^7*(x +1)^3*(x^2 +x +1)) + O(x^100))) \\ Colin Barker, Mar 23 2014
Formula
a(n) = (n^6 + 3*n^5 - 39*n^4 + 10*n^3 + 456*n^2 - 1008*n + 576)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 5*n - 5)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: -x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1) / ((x -1)^7*(x +1)^3*(x^2 +x +1)). - Colin Barker, Mar 23 2014
Comments