cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239574 Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239570.

Examples

			There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
      X
     . .
    . X .
   X . . X
		

Crossrefs

Cf. A239572, A239570, A032091 (2 points), A239573 (3 points), A239575 (5 points), A279446 (6 points).

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
    Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)

Formula

a(n) = (n^8 +4*n^7 -78*n^6 -104*n^5 +2556*n^4 -3152*n^3 -27280*n^2 +89664*n -78336)/2304 +IF(n == 1 mod 2)*(28*n^3 -54*n^2 -160*n +129)/768 +IF(n == 1 mod 3)*(n^2 +n -14)/18.
G.f.: x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3). - Vaclav Kotesovec, Mar 29 2014