A239575 Number of non-equivalent (mod D_3) ways to place 5 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
0, 0, 7, 176, 1976, 12565, 57275, 207018, 634166, 1711262, 4181915, 9428657, 19892816, 39684027, 75473209, 137721045, 242391212, 413215132, 684733527, 1106194950, 1746637600, 2701244609, 4099429895, 6114748948, 8977257362, 12988406970, 18539308619, 26132434991
Offset: 3
Examples
There are a(5) = 7 non-equivalent ways to place 5 points (x) on a triangular grid of side 5. These are: x x . x . . . . . . . . x . x x . x x . x . x . . . . . . . . . . . . . . . . . x . . . x . x . x . x . x . x x . x . x . x x x . . . . . . . x . . x . x . x x . . x x . . . . . . . . . x . . . . x . x x . . x .
Links
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1)
Crossrefs
Programs
-
Mathematica
Table[(n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + (1-(-1)^n)/2*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536,{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 31 2014 *) Drop[CoefficientList[Series[x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11*(1+x)^5)), {x, 0, 20}], x], 3] (* Vaclav Kotesovec, Mar 31 2014 *)
Formula
a(n) = (n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + IF(MOD(n,2) = 1)*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536.
G.f.: x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11 * (1+x)^5)). - Vaclav Kotesovec, Mar 31 2014
Comments