cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239581 Number of primitive Pythagorean triangles (x, y, z) with legs x < y < 10^n.

This page as a plain text file.
%I A239581 #34 Feb 16 2025 08:33:21
%S A239581 1,18,179,1788,17861,178600,1786011,17860355,178603639,1786036410,
%T A239581 17860362941
%N A239581 Number of primitive Pythagorean triangles (x, y, z) with legs x < y < 10^n.
%C A239581 A Pythagorean triangle is a right triangle with integer side lengths x, y, z forming a Pythagorean triple (x, y, z). It is called primitive, if gcd(x, y, z) = 1.
%C A239581 Because (x, y, z) is equivalent to (y, x, z), the total number of primitive Pythagorean triangles with legs x, y < 10^n is b(n) = 2*a(n) = 2, 36, 358, 3576, 35722, ...
%H A239581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriangle.html">Pythagorean Triangle</a>.
%H A239581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>.
%e A239581 a(1) = 1, because the only primitive Pythagorean triangle with x < y < 10 is [3, 4, 5].
%Y A239581 Cf. A008846, A020882, A020883, A020884, A046086, A046087, A101931, A101929, A239744, A239786.
%K A239581 nonn,more
%O A239581 1,2
%A A239581 _Martin Renner_, Mar 26 2014
%E A239581 a(6)-a(11) from _Giovanni Resta_, Mar 27 2014