This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239588 #13 Dec 20 2015 19:50:21 %S A239588 0,7890481,9150625,623201296,981506241,17363069361,18945044881, %T A239588 28813025536,33871089681,38167092496,45954068161,89526025681, %U A239588 95565066496,1421970391296,1551160647936,1736870953216,3941340648961,4771970346256,5281980641536,5436960129441 %N A239588 Fourth powers that are cyclops numbers. %C A239588 Intersection of A000583 (Fourth powers) and A134808 (Cyclops numbers). %H A239588 Colin Barker, <a href="/A239588/b239588.txt">Table of n, a(n) for n = 1..1500</a> %F A239588 a(n) = A239591(n)^4. %t A239588 cn4Q[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn]; OddQ[ len] && idn[[(len+1)/2]]==0&&DigitCount[n,10,0]==1]; Select[Range[0,2000]^4, cn4Q] (* _Harvey P. Dale_, Dec 20 2015 *) %o A239588 (PARI) %o A239588 is_cyclops(k) = { %o A239588 if(k==0, return(1)); %o A239588 my(d=digits(k), j); %o A239588 if(#d%2==0 || d[#d\2+1]!=0, return(0)); %o A239588 for(j=1, #d\2, if(d[j]==0, return(0))); %o A239588 for(j=#d\2+2, #d, if(d[j]==0, return(0))); %o A239588 return(1)} %o A239588 s=[]; for(n=0, 2000, if(is_cyclops(n^4), s=concat(s, n^4))); s %Y A239588 Cf. A000583, A134808, A160711, A239587, A239589, A239590, A239591. %K A239588 nonn,base %O A239588 1,2 %A A239588 _Colin Barker_, Mar 24 2014