cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239618 Number of primitive Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.

This page as a plain text file.
%I A239618 #21 Feb 16 2025 08:33:21
%S A239618 0,0,5,19,65,242,704,1884,4631
%N A239618 Number of primitive Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.
%C A239618 An Euler brick is a cuboid of integer side dimensions a, b, c such that the face diagonals are integers. It is called primitive if gcd(a,b,c)=1.
%C A239618 Because the sides of a cuboid are permutable without changing its shape, the total number of primitive Euler bricks in the parameter space a, b, c < 10^n is b(n) = 6*a(n) = 0, 0, 30, 114, 390, ...
%H A239618 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerBrick.html">Euler Brick</a>
%H A239618 <a href="/index/Br#bricks">Index entries for sequences related to bricks</a>
%e A239618 a(3) = 5, since there are the five primitive Euler bricks [44, 117, 240], [85, 132, 720], [140, 480, 693], [160, 231, 792], [240, 252, 275] with longest side length < 1000.
%o A239618 (Sage)
%o A239618 def a(n):
%o A239618     ans = 0
%o A239618     for x in range(1,10^n):
%o A239618         divs = Integer(x^2).divisors()
%o A239618         for d in divs:
%o A239618             if (d <= x^2/d): continue
%o A239618             if (d-x^2/d >= 2*x): break
%o A239618             if (d-x^2/d)%2==0:
%o A239618                 y = (d-x^2/d)/2
%o A239618                 for e in divs:
%o A239618                     if (e <= x^2/e): continue
%o A239618                     if (e-x^2/e >= 2*y): break
%o A239618                     if (e-x^2/e)%2==0:
%o A239618                         z = (e-x^2/e)/2
%o A239618                         if (gcd([x,y,z])==1) and (y^2+z^2).is_square():
%o A239618                             ans += 1
%o A239618     return ans  # _Robin Visser_, Jan 01 2024
%Y A239618 Cf. A031173, A031174, A031175, A239620.
%K A239618 nonn,more
%O A239618 1,3
%A A239618 _Martin Renner_, Mar 22 2014
%E A239618 a(6)-a(8) from _Giovanni Resta_, Mar 22 2014
%E A239618 a(9) from _Robin Visser_, Jan 01 2024