cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A239643 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

4, 20, 112, 560, 2874, 14788, 75540, 387306, 1983686, 10160422, 52047250, 266599168, 1365605466, 6995075202, 35830971136, 183537592492, 940137864960, 4815683846868, 24667460086554, 126354551389040, 647228071957412
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 2 of A239649

Examples

			Some solutions for n=5
..1..0....1..3....3..1....3..1....1..0....1..0....1..0....1..0....3..1....1..0
..1..3....2..0....3..2....3..2....2..0....2..1....2..1....2..0....3..2....1..0
..2..0....3..2....3..2....2..0....3..0....3..0....3..0....3..1....1..2....1..3
..1..0....2..0....1..0....1..3....3..0....2..1....2..1....3..0....3..0....3..2
..2..0....3..0....3..0....1..2....2..0....3..1....1..2....1..2....2..0....2..0
		

Formula

Empirical: a(n) = a(n-1) +16*a(n-2) +31*a(n-3) -8*a(n-4) -78*a(n-5) -45*a(n-6) +56*a(n-7) -32*a(n-8) +32*a(n-9) +16*a(n-10)

A239644 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

8, 92, 1182, 13476, 158728, 1864886, 21813374, 255830770, 2997975560, 35134044112, 411772022880, 4825831891850, 56557172387854, 662835950459020, 7768238700938098, 91041566963856564, 1066981238248658526
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 3 of A239649

Examples

			Some solutions for n=5
..1..0..3....3..0..1....1..3..1....1..3..3....3..0..1....1..0..0....3..0..0
..1..0..0....3..1..1....2..0..0....2..0..0....2..0..1....2..0..3....2..0..1
..2..1..0....1..0..3....2..3..2....2..3..3....1..3..2....2..3..0....1..0..2
..1..0..2....3..1..2....2..1..2....1..2..1....2..3..3....1..3..3....2..1..0
..2..0..0....1..3..3....3..2..0....2..3..3....1..3..2....1..3..2....1..2..0
		

Formula

Empirical: a(n) = 2*a(n-1) +103*a(n-2) +305*a(n-3) -1576*a(n-4) -7517*a(n-5) +13822*a(n-6) +84263*a(n-7) -193487*a(n-8) -386588*a(n-9) +2125542*a(n-10) -2240531*a(n-11) -6903934*a(n-12) +24598571*a(n-13) -24037070*a(n-14) -20933507*a(n-15) +84761410*a(n-16) -76409880*a(n-17) -58972949*a(n-18) +191904430*a(n-19) -103074732*a(n-20) -119505780*a(n-21) +301528072*a(n-22) -71474328*a(n-23) -220257104*a(n-24) +158665984*a(n-25) -141276800*a(n-26) -317537024*a(n-27) -19131392*a(n-28) -71272448*a(n-29) -128999424*a(n-30) -20832256*a(n-31) -5177344*a(n-32) -4849664*a(n-33) +1048576*a(n-34) +524288*a(n-35)

A239645 Number of nX4 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

16, 418, 12246, 320314, 8634040, 232304146, 6219477628, 167002115382, 4480024646968, 120194161637198, 3224850795644656, 86521373598621284, 2321331783000405634, 62280781184357139014, 1670970691795092353254
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 4 of A239649

Examples

			Some solutions for n=3
..3..0..0..1....3..0..0..1....3..1..1..3....1..0..0..0....3..1..1..3
..2..1..1..2....2..3..0..0....3..0..0..2....2..1..0..0....2..0..1..2
..1..0..2..2....1..2..0..0....3..0..2..2....3..0..0..1....1..0..2..0
		

A239646 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

32, 1898, 127454, 7629186, 471203608, 29007348454, 1778793691226, 109328664988704, 6715782662219974, 412490973458702324, 25339828640359240868, 1556520770131967950650, 95613587799294743202656
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 5 of A239649

Examples

			Some solutions for n=3
..1..3..1..0..0....1..0..0..3..1....1..3..1..3..3....1..3..1..3..3
..1..2..2..0..0....1..0..3..2..1....1..2..2..3..2....1..0..0..0..2
..3..1..2..1..0....2..3..0..0..3....1..2..2..3..2....1..3..1..2..1
		

A239647 Number of n X 6 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

64, 8588, 1320102, 181039448, 25594620082, 3608789598890, 506611939408296, 71303275040032094, 10028169382114414238, 1410355079410016070644, 198375045596724574543898, 27900810294523342171973188
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 6 of A239649.

Examples

			Some solutions for n=2:
..1..3..1..3..3..0....3..1..3..0..0..1....1..3..1..0..0..0....1..3..3..1..1..0
..1..2..2..2..2..0....3..0..0..0..1..2....1..0..2..1..3..0....1..2..0..2..2..1
		

Crossrefs

Cf. A239649.

A239648 Number of nX7 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of elements above it, modulo 4.

Original entry on oeis.org

128, 38888, 13703468, 4304123072, 1393740949524, 449878848794094, 144633234041629586, 46605631116410605602, 15009686604114403319918, 4833298966552939324386658, 1556693436923279970529451138
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Column 7 of A239649

Examples

			Some solutions for n=2
..3..0..1..3..1..3..0....3..1..1..0..0..0..0....3..0..0..1..1..0..3
..2..3..0..2..2..3..3....2..1..2..0..3..1..0....3..1..3..0..2..0..3
		

A239650 Number of 2 X n 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

4, 20, 92, 418, 1898, 8588, 38888, 175974, 796550, 3604984, 16316908, 73849786, 334252546, 1512838756, 6847231728, 30990953678, 140267248638, 634858320528, 2873411390324, 13005245181090, 58862597882746, 266415951317884
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Examples

			Some solutions for n=5:
..1..3..1..0..0....1..3..3..0..1....3..1..1..3..1....1..3..1..0..3
..2..3..0..0..3....1..0..0..0..2....3..1..2..3..0....2..0..1..0..0
		

Crossrefs

Row 2 of A239649.

Formula

Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 18*a(n-3) - 29*a(n-4) + 19*a(n-5) + 38*a(n-6) + 8*a(n-7).
Empirical g.f.: 2*x*(2 + 4*x - 8*x^2 - 13*x^3 + 8*x^4 + 19*x^5 + 4*x^6) / (1 - 3*x - 12*x^2 + 18*x^3 + 29*x^4 - 19*x^5 - 38*x^6 - 8*x^7). - Colin Barker, Oct 26 2018

A239651 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

10, 112, 1182, 12246, 127454, 1320102, 13703468, 142051652, 1473731150, 15282171258, 158517866826, 1643986061990, 17051506678146, 176848369394606, 1834236131924494, 19023918997995414, 197310588661661646
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Row 3 of A239649

Examples

			Some solutions for n=5
..1..0..3..1..0....3..0..1..3..0....3..1..1..3..1....1..0..0..0..0
..2..1..0..1..1....2..1..2..2..1....2..0..0..3..0....2..0..0..0..1
..3..1..2..1..1....2..0..0..0..0....1..0..2..2..2....3..0..0..0..0
		

Formula

Empirical: a(n) = 8*a(n-1) +73*a(n-2) -446*a(n-3) -1413*a(n-4) +8070*a(n-5) +12185*a(n-6) -63420*a(n-7) -49358*a(n-8) +220534*a(n-9) +39486*a(n-10) -241802*a(n-11) +244780*a(n-12) -89648*a(n-13) -386680*a(n-14) -228008*a(n-15) +129984*a(n-16) -457816*a(n-17) -1064416*a(n-18) -330768*a(n-19) +556128*a(n-20) -351872*a(n-21) +769280*a(n-22) +407552*a(n-23) -200704*a(n-24) +32768*a(n-25)

A239652 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

22, 560, 13476, 320314, 7629186, 181039448, 4304123072, 102200616210, 2428626527384, 57685354968172, 1370565397733518, 32557886444429002, 773502177670875660, 18375412388378425556, 436547133372227822360
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Row 4 of A239649

Examples

			Some solutions for n=3
..1..0..0....3..0..1....1..0..0....1..3..3....3..1..3....1..0..0....1..0..0
..1..3..1....2..3..0....1..0..0....1..2..0....3..1..2....1..0..3....2..0..3
..2..0..1....2..3..0....3..0..1....2..1..0....2..1..1....1..0..0....3..1..3
..1..0..3....3..1..1....1..0..0....1..2..0....3..2..3....3..1..3....2..1..1
		

Formula

Empirical recurrence of order 91 (see link above)

A239653 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4.

Original entry on oeis.org

50, 2874, 158728, 8634040, 471203608, 25594620082, 1393740949524, 75771817108924, 4123656581299810, 224277326338407636, 12202934653709078564, 663797011286508892758, 36113966969053403996390, 1964591618175666103412114
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2014

Keywords

Comments

Row 5 of A239649

Examples

			Some solutions for n=3
..1..0..3....1..0..0....1..0..3....1..0..3....3..1..1....3..0..0....1..0..3
..2..3..0....1..3..3....1..3..2....2..1..2....3..2..0....3..1..1....2..3..3
..3..2..0....2..0..0....2..0..1....2..1..2....2..3..2....3..0..1....3..0..1
..1..0..3....3..2..0....1..3..3....2..3..0....1..2..2....1..0..3....1..3..2
..3..2..3....2..0..0....2..1..0....2..0..3....1..3..2....1..2..1....3..1..1
		
Showing 1-10 of 13 results. Next