cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.

This page as a plain text file.
%I A239660 #87 Apr 23 2023 07:24:00
%S A239660 1,1,1,1,2,2,2,2,2,1,1,2,2,1,1,2,3,1,1,3,3,1,1,3,3,2,2,3,3,2,2,3,4,1,
%T A239660 1,1,1,4,4,1,1,1,1,4,4,2,1,1,2,4,4,2,1,1,2,4,5,2,1,1,2,5,5,2,1,1,2,5,
%U A239660 5,2,2,2,2,5,5,2,2,2,2,5,6,2,1,1,1,1,2,6,6,2,1,1,1,1,2,6,6,3,1,1,1,1,3,6,6,3,1,1,1,1,3,6
%N A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.
%C A239660 For the construction of this sequence also we can start from A235791.
%C A239660 This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
%C A239660 Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
%C A239660 We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - _Omar E. Pol_, Dec 07 2016
%C A239660 The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - _Omar E. Pol_, Jun 10 2019
%H A239660 Robert Price, <a href="/A239660/b239660.txt">Table of n, a(n) for n = 1..30016</a> (rows n = 1..412, flattened)
%e A239660 Triangle begins (first 15.5 rows):
%e A239660 1, 1, 1, 1;
%e A239660 2, 2, 2, 2;
%e A239660 2, 1, 1, 2, 2, 1, 1, 2;
%e A239660 3, 1, 1, 3, 3, 1, 1, 3;
%e A239660 3, 2, 2, 3, 3, 2, 2, 3;
%e A239660 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
%e A239660 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
%e A239660 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
%e A239660 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
%e A239660 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
%e A239660 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
%e A239660 7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
%e A239660 7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
%e A239660 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
%e A239660 8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
%e A239660 9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
%e A239660 .
%e A239660 Illustration of initial terms as an infinite Dyck path (row n = 1..4):
%e A239660 .
%e A239660 .                            /\/\    /\/\
%e A239660 .       /\  /\  /\/\  /\/\  /    \  /    \
%e A239660 .  /\/\/  \/  \/    \/    \/      \/      \
%e A239660 .
%e A239660 .
%e A239660 Illustration of initial terms for the construction of a spiral related to sigma:
%e A239660 .
%e A239660 .  row 1     row 2          row 3           row 4
%e A239660 .                                          _ _ _
%e A239660 .                                               |_
%e A239660 .             _ _                                 |
%e A239660 .   _ _      |                                    |
%e A239660 .  |   |     |                                    |
%e A239660 .            |         |           |              |
%e A239660 .            |_ _      |_         _|              |
%e A239660 .                        |_ _ _ _|               _|
%e A239660 .                                          _ _ _|
%e A239660 .
%e A239660 .[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
%e A239660 .
%e A239660 The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
%e A239660 .
%e A239660 Illustration of the spiral constructed with the first 15.5 rows of triangle:
%e A239660 .
%e A239660 .               12 _ _ _ _ _ _ _ _
%e A239660 .                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
%e A239660 .                 | |             |_ _ _ _ _ _ _|
%e A239660 .                _| |                           |
%e A239660 .               |_ _|9 _ _ _ _ _ _              |_ _
%e A239660 .         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
%e A239660 .      _ _ _| |      _| |         |_ _ _ _ _|         |
%e A239660 .     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
%e A239660 .     | |      _ _| |   12 _ _ _ _          |_  |         | |
%e A239660 .     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
%e A239660 .     | |     | |      _|   |     |_ _ _|         | |     | |
%e A239660 .     | |     | |     |  _ _|           |_ _ 3    | |     | |
%e A239660 .     | |     | |     | |    3 _ _        | |     | |     | |
%e A239660 .     | |     | |     | |     |  _|_ 1    | |     | |     | |
%e A239660 .    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
%e A239660 .   | |     | |     | |     | |         | |     | |     | |     | |
%e A239660 .   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
%e A239660 .   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
%e A239660 .   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |
%e A239660 .   | |     | |    4    |_               7 _|  _ _|     | |     | |
%e A239660 .   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
%e A239660 .   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |
%e A239660 .   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
%e A239660 .  8      | |_ _      |                     15|      _|   |  _ _ _|
%e A239660 .         |_    |     |_ _ _ _ _ _            |  _ _|    _| |
%e A239660 .        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
%e A239660 .             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
%e A239660 .                 |                             28|  _ _|
%e A239660 .                 |_ _ _ _ _ _ _ _                | |
%e A239660 .                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
%e A239660 .                8                |_ _ _ _ _ _ _ _ _|
%e A239660 .                                                    31
%e A239660 .
%e A239660 The diagram contains A237590(16) = 27 parts.
%e A239660 The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
%e A239660 Diagram extended by _Omar E. Pol_, Aug 23 2018
%Y A239660 Row n has length 4*A003056(n).
%Y A239660 The sum of row n is equal to 4*n = A008586(n).
%Y A239660 Row n is a palindromic composition of 4*n = A008586(n).
%Y A239660 Both column 1 and right border are A008619, n >= 1.
%Y A239660 The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.
%Y A239660 Cf. A000203, A000217, A003056, A008619, A010883, A112610, A193553, A237048, A237271, A237590, A239052, A239053, A239663, A239665, A239931, A239932, A239933, A239934, A240020, A240062, A244050, A245092, A262626, A296508, A299778.
%K A239660 nonn,look,tabf
%O A239660 1,5
%A A239660 _Omar E. Pol_, Mar 24 2014