This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239663 #101 Aug 11 2025 23:50:46 %S A239663 1,3,9,21,63,147,357,903,2499,6069,13915,29095,59455,142945,320045, %T A239663 643885,1367465,3287735,6779135,13853015,30262595,61773745 %N A239663 a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts. %C A239663 Conjecture 1: where records occur in A237271. - _Omar E. Pol_, Dec 27 2016 %C A239663 For more information about the symmetric representation of sigma see A237270, A237593. %C A239663 This sequence of (first occurrence of) parts appears to be strictly increasing in contrast to sequence A250070 of (first occurrence of) maximum widths. - _Hartmut F. W. Hoft_, Dec 09 2014 %C A239663 Conjecture 2: all terms are odd numbers. - _Omar E. Pol_, Oct 14 2018 %C A239663 Proof of Conjecture 2: Let n = 2^m * q with m>0 and q odd; then the 1's in even positions of row n in the triangle of A237048 are at positions 2^(m+1) * d <= row(n) where d divides q. For n/2 the even positions of 1's occur at the smaller values 2^m * d <= row(n/2), thus either keeping or reducing widths (A249223) of parts in the symmetric representation of sigma for n/2 inherited from row n. Therefore the number of parts for n is at most as large as for n/2, i.e., all numbers in this sequence are odd. - _Hartmut F. W. Hoft_, Sep 22 2021 %C A239663 Observation: at least for n = 1..21 we have that 2*a(n) < a(n+1). - _Omar E. Pol_, Sep 22 2021 %C A239663 From _Omar E. Pol_, Jul 28 2025: (Start) %C A239663 Conjecture 3: a(n) is the smallest number k having n 2-dense sublists of divisors of k. %C A239663 The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2. %C A239663 In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k. %C A239663 An example of the conjecture 3 for n = 1..5 is as shown below: %C A239663 ---------------------------------------------------- %C A239663 | | List of divisors of k | | | %C A239663 | k | [with sublists in brackets] | n | a(n) | %C A239663 ---------------------------------------------------- %C A239663 | 1 | [1]; | 1 | 1 | %C A239663 | 3 | [1], [3]; | 2 | 3 | %C A239663 | 9 | [1], [3], [9]; | 3 | 9 | %C A239663 | 21 | [1], [3], [7], [21]; | 4 | 21 | %C A239663 | 63 | [1], [3], [7, 9], [21], [63]; | 5 | 63 | %C A239663 (End) %C A239663 Conjecture 4: a(n) is the smallest number k having n divisors p of k such that p is greater than twice the adjacent previous divisor of k. - _Omar E. Pol_, Aug 05 2025 %H A239663 Hartmut F. W. Hoft, <a href="/A239663/a239663.pdf">Procedural implementation for extension values</a> %H A239663 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (16 levels)</a> %e A239663 ------------------------------------------------------ %e A239663 n a(n) A239665 A266094(n) %e A239663 ------------------------------------------------------ %e A239663 1 1 [1] 1 %e A239663 2 3 [2, 2] 4 %e A239663 3 9 [5, 3, 5] 13 %e A239663 4 21 [11, 5, 5, 11] 32 %e A239663 5 63 [32, 12, 16, 12, 32] 104 %e A239663 ... %e A239663 For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below: %e A239663 . %e A239663 . _ _ _ _ _ 5 %e A239663 . |_ _ _ _ _| %e A239663 . |_ _ 3 %e A239663 . |_ | %e A239663 . |_|_ _ 5 %e A239663 . | | %e A239663 . | | %e A239663 . | | %e A239663 . | | %e A239663 . |_| %e A239663 . %t A239663 (* a239663[] permits computation in intervals *) %t A239663 (* Function a237270[] is defined in A237270 *) %t A239663 (* variable "list" contains the first occurrences up to m *) %t A239663 a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts] %t A239663 a239663[{1}, {1, 1000}] (* computes the first 8 values *) %t A239663 (* _Hartmut F. W. Hoft_, Jul 08 2014 *) %t A239663 (* support functions are defined in A341969, A341970 & A341971 *) %t A239663 a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list] %t A239663 a239663[62000000,22] (* _Hartmut F. W. Hoft_, Sep 22 2021 *) %Y A239663 Row 1 of A240062. %Y A239663 Cf. A000203, A196020, A236104, A235791, A237048, A237270, A237271, A237591, A237593, A238443, A239657, A239660, A239665, A239931-A239934, A245092, A262626, A266094. %Y A239663 Cf. A249223, A250070, A262045, A320521, A341969, A341970, A341971, A347980. %Y A239663 Cf. A174973 (2-dense numbers), A384149, A384222, A384225, A384226. %K A239663 nonn,more,hard %O A239663 1,2 %A A239663 _Omar E. Pol_, Mar 23 2014 %E A239663 a(6)-a(8) from _Michel Marcus_, Mar 28 2014 %E A239663 a(9) from _Michel Marcus_, Mar 29 2014 %E A239663 a(10)-a(11) from _Michel Marcus_, Apr 02 2014 %E A239663 a(12) from _Hartmut F. W. Hoft_, Jul 08 2014 %E A239663 a(13)-a(18) from _Hartmut F. W. Hoft_, Dec 09 2014 %E A239663 a(19)-a(22) from _Hartmut F. W. Hoft_, Sep 22 2021