cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239672 Product_{i=1..n} J_6(i) where J_6(i) = A069091(i).

This page as a plain text file.
%I A239672 #8 Feb 16 2025 08:33:21
%S A239672 1,63,45864,184923648,2889247076352,132512427909808128,
%T A239672 15589822118733106642944,4022922418094840702998413312,
%U A239672 2135013202351949099169693925638144,2101519115233451721701919767332732796928,3722967203782973732098252983015976113725767680
%N A239672 Product_{i=1..n} J_6(i) where J_6(i) = A069091(i).
%C A239672 This is the generalized factorial for A069091.
%C A239672 a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^6 for 1 <= i,j <= n.
%D A239672 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.
%H A239672 Antal Bege, <a href="http://www.emis.de/journals/AUSM/C1-1/MATH1-4.PDF">Hadamard product of GCD matrices</a>, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
%H A239672 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LePaigesTheorem.html">Le Paige's Theorem</a>
%o A239672 (Sage)
%o A239672 q=15 # change q for more terms
%o A239672 J6=[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
%o A239672 [prod(J6[0:i+1]) for i in [0..q-1]]
%Y A239672 Cf. A069091, A175836, A059381, A059382, A059383.
%K A239672 nonn
%O A239672 1,2
%A A239672 _Tom Edgar_, Mar 23 2014