This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239697 #35 May 22 2025 10:21:37 %S A239697 2,4,8,88,252,2576,8820,2112,4224,8448,44544,48384,846720,4078080, %T A239697 405504,4091904,441606144,405909504,886898688,677707776,4285005824, %U A239697 63769149440,21128282112,633498894336,2701312131072,6739855589376,29142024192,65892155129856,4815463645184,445488555884544,23088546155855872 %N A239697 Smallest m such that m and reverse(m) each have n (not necessarily distinct) prime factors. %C A239697 For all terms thus far, both m and reverse(m) are even. %C A239697 a(24) > 10^11. - _Giovanni Resta_, Mar 31 2014 %F A239697 {min m: A001222(m) = A001222(A004086(m))}. - _R. J. Mathar_, Apr 04 2014 %e A239697 2576 = 2*2*2*2*23*7 (6 factors) %e A239697 6752 = 2*2*2*2*2*211 (6 factors) %e A239697 Since 2576 is the smallest number with this property, a(6) = 2576. %p A239697 A239697 := proc(n) %p A239697 local a; %p A239697 for a from 1 do %p A239697 if numtheory[bigomega](a) = n then %p A239697 if numtheory[bigomega](digrev(a)) =n then %p A239697 return a; %p A239697 end if; %p A239697 end if; %p A239697 end do: %p A239697 end proc: # _R. J. Mathar_, Apr 04 2014 %o A239697 (Python) %o A239697 import sympy %o A239697 from sympy import factorint %o A239697 from sympy import primorial %o A239697 def Rev(x): %o A239697 rev = '' %o A239697 for i in str(x): %o A239697 rev = i + rev %o A239697 return int(rev) %o A239697 def RevFact(x): %o A239697 n = 2 %o A239697 while n <= primorial(x): %o A239697 if sum(list(factorint(n).values())) == x: %o A239697 if sum(list(factorint(Rev(n)).values())) == x: %o A239697 return n %o A239697 else: %o A239697 n += 1 %o A239697 else: %o A239697 n += 1 %o A239697 x = 1 %o A239697 while x < 50: %o A239697 print(RevFact(x)) %o A239697 x += 1 %Y A239697 Cf. A237912, A237913. %K A239697 nonn,base %O A239697 1,1 %A A239697 _Derek Orr_, Mar 24 2014 %E A239697 a(17)-a(23) from _Giovanni Resta_, Mar 31 2014 %E A239697 a(24)-a(31) from _David A. Corneth_, Oct 03 2020