A239702 Triangle read by rows: T(n,k) = A239682(n)/(A239682(k)* A239682(n-k)).
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 4, 4, 4, 1, 1, 2, 8, 4, 8, 2, 1, 1, 6, 12, 24, 24, 12, 6, 1, 1, 1, 6, 6, 24, 6, 6, 1, 1, 1, 2, 2, 6, 12, 12, 6, 2, 2, 1, 1, 4, 8, 4, 24, 12, 24, 4, 8, 4, 1, 1, 10, 40, 40, 40, 60, 60, 40, 40, 40, 10, 1, 1, 2
Offset: 0
Examples
The first six terms A173557 are 1,1,2,1,4,2 and so T(4,2) = 1*2*1*1/((1*1)*(1*1))=2 and T(6,3) = 2*4*1*2*1*1/((2*1*1)*(2*1*1))=4. The triangle begins 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 4 4 4 4 1 1 2 8 4 8 2 1 1 6 12 24 24 12 6 1
Links
- Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
Programs
-
Sage
q=100 #change q for more rows P=[0]+[prod([(x-1) for x in prime_divisors(n)]) for n in [1..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] # generates the triangle up to q rows.
Comments