A239704 Number of bases b for which the base-b alternate digital sum of n is b.
1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 1, 3, 0, 1, 1, 1, 0, 5, 0, 1, 1, 1, 0, 4, 0, 2, 1, 1, 0, 3, 0, 1, 0, 3, 0
Offset: 1
Keywords
Examples
a(1) = 1, since altDigitSum_1(1) = 1 and altDigitSum_b(1) = 1 < b for all b > 1. a(2) = 0, since altDigitSum_1(2) = 0 (because of 2 = 11_1), and altDigitSum_2(2) = -1 (because of 2 = 10_2), and altDigitSum_b(2) = 2 < b for all b > 2. a(3) = 1, since altDigitSum_1(3) = 1 (because of 3 = 111_1), and altDigitSum_2(3) = 0 (because of 3 = 11_2), and altDigitSum_3(3) = -1 (because of 3 = 10_3), and altDigitSum_b(3) = 3 < b for all b > 3. a(5) = 2, since altDigitSum_1(5) = 1 (because of 5 = 11111_1), and altDigitSum_2(5) = 2 (because of 5 = 101_2), and altDigitSum_3(5) = 1 (because of 5 = 12_3), and altDigitSum_4(5) = 0 (because of 5 = 11_4), and altDigitSum_5(5) = 1 (because of 5 = 10_5), and altDigitSum_b(5) = 5 < b for all b > 5.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Smalltalk
"> Version 1: simple calculation for small numbers. Answer the number of bases b for which the alternate digital sum of n in base b is b. Valid for bases b > 0. Usage: n numOfBasesWithAltDigitalSumEQ0 Answer: a(n)" numOfBasesWithAltDigitalSumEQBase | b q numBases | self < 2 ifTrue: [^0]. numBases := 1. q := self sqrtTruncated. b := 1. [b < q] whileTrue:[ (self altDigitalSumRight: b) = 0 ifTrue: [numBases := numBases + 1]. b := b + 1]. ^numBases [by Hieronymus Fischer, May 08 2014] -----------
-
Smalltalk
"> Version 2: accelerated calculation for large numbers. Answer the number of bases b for which the alternate digital sum of n in base b is b." numOfBasesWithAltDigitalSumEQBase | numBases div b bsize | div := (self + 1) divisors. numBases := 0. bsize := div size // 2 + 1. 2 to: bsize do: [:i | b := (div at: i) - 1. [(self altDigitalSumRight: b) = b ifTrue: [numBases := numBases + 1]]]. ^numBases [by Hieronymus Fischer, May 08 2014]
Formula
a(A002378(n)-1) = a(n^2+n-1) >= 2, for n > 1.
a(n) = 0, if n + 1 is a prime.
a(n) <= floor(sigma_0(n+1)/2).
Comments