This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239708 #22 Mar 24 2025 10:22:31 %S A239708 3,6,12,18,20,24,48,68,72,80,132,192,258,264,272,384,1032,1040,1088, %T A239708 1152,1280,2064,2112,4100,4112,4128,4160,5120,6144,8448,16448,20480, %U A239708 32772,32784,32832,33024,33792,65538,65540,65544,65552,65600,66048,73728,81920,262148,262152,262272,262400,263168,266240,294912,524352,528384,786432 %N A239708 Numbers of the form m = 2^i + 2^j, where i > j >= 0, such that m - 1 is prime. %C A239708 Complement of the disjunction of A079696 with A187813. This means that a number m is a term if and only if b = 2 is the only base for which the base-b digital sum of m is b. %H A239708 Hieronymus Fischer, <a href="/A239708/b239708.txt">Table of n, a(n) for n = 1..250</a> %F A239708 A239703(a(n)) = 1. %e A239708 a(1) = 3, since 3 = 2^1 + 2^0. %e A239708 a(3) = 12, since 12 = 2^3 + 2^2. %o A239708 (Smalltalk) %o A239708 A239708 %o A239708 "Answers the n-th term of A239708. %o A239708 Usage: n A239708 %o A239708 Answer: a(n)" %o A239708 | a b i k m p q terms | %o A239708 terms := OrderedCollection new. %o A239708 b := 2. %o A239708 p := 1. %o A239708 k := 0. %o A239708 m := 0. %o A239708 [k < self] whileTrue: %o A239708 [m := m + 1. %o A239708 p := b * p. %o A239708 q := 1. %o A239708 i := 0. %o A239708 [i < m and: [k < self]] whileTrue: %o A239708 [i := i + 1. %o A239708 a := p + q. %o A239708 (a - 1) isPrime %o A239708 ifTrue: %o A239708 [k := k + 1. %o A239708 terms add: a]. %o A239708 q := b * q]]. %o A239708 ^terms at: self %o A239708 ----------------- %o A239708 (Smalltalk) %o A239708 A239708inv %o A239708 "Answers a kind of inverse of A239708. %o A239708 Usage: n A239708inv %o A239708 Answer: max ( k | A239708(k) < n)" %o A239708 | k | %o A239708 k := 1. %o A239708 [k A239708 < self] whileTrue: [k := k + 1]. %o A239708 ^k - 1 %o A239708 (Python) %o A239708 from itertools import islice %o A239708 from sympy import isprime %o A239708 def A239708_gen(): # generator of terms %o A239708 yield (n:=3) %o A239708 while True: %o A239708 n = n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b %o A239708 if isprime(n-1): %o A239708 yield n %o A239708 A239708_list = list(islice(A239708_gen(),30)) # _Chai Wah Wu_, Mar 24 2025 %Y A239708 Cf. A239709 - A239720. %Y A239708 Cf. A239703, A187813, A079696, A008864. %K A239708 nonn %O A239708 1,1 %A A239708 _Hieronymus Fischer_, Mar 27 2014