cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239716 Primes of the form m = 6^i + 6^j - 1, where i > j >= 0.

This page as a plain text file.
%I A239716 #10 Oct 05 2024 13:08:19
%S A239716 41,251,1301,1511,46691,47951,279941,1679831,10077911,10124351,
%T A239716 60466181,60466391,60473951,362797091,362797271,362843711,2176782371,
%U A239716 2237248511,13060694051,13121160191,78364164101,78364164311,78364171871
%N A239716 Primes of the form m = 6^i + 6^j - 1, where i > j >= 0.
%C A239716 The base-6 representation of a term 6^i + 6^j - 1 has base-6 digital sum = 1 + 5*j == 1 (mod 5).
%C A239716 In base-6 representation the first terms are 105, 1055, 10005, 10555, 1000055, 1005555, 10000005, 100000555, 1000000555, 1000555555, 10000000005, 10000000555,
%H A239716 Hieronymus Fischer, <a href="/A239716/b239716.txt">Table of n, a(n) for n = 1..60</a>
%e A239716 a(1) = 41, since 41 = 6^2 + 6^1 - 1 is prime.
%e A239716 a(2) = 251, since 251 = 6^3 + 6^2 - 1 is prime.
%t A239716 Select[Union[Flatten[Table[6^i+6^j-1,{i,20},{j,0,i-1}]]],PrimeQ] (* _Harvey P. Dale_, Oct 05 2024 *)
%o A239716 (Smalltalk)
%o A239716 A239716
%o A239716   "Answers an array of the first n terms of A239716.
%o A239716   Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
%o A239716   Usage: n A239716
%o A239716   Answer: #(41 241 ... ) [a(1) ... a(n)]"
%o A239716   ^self primesWhichAreDistinctPowersOf: 6 withOffset: -1
%K A239716 nonn
%O A239716 1,1
%A A239716 _Hieronymus Fischer_, Apr 14 2014