A239723 Least number k such that n^k + (n+1)^k + ... + (n+k-1)^k is prime or 0 if no such number exists.
2, 1, 1, 2, 1, 0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 6, 1, 0, 1, 0, 6, 2, 1, 2, 2, 0, 0, 0, 1, 2, 1, 2, 0, 2, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 0, 0, 1, 6, 0, 2, 0, 0, 1, 0, 0, 0, 0, 6, 1, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 2, 1, 2, 1, 0, 0, 6, 0, 0, 1, 0, 0, 2, 1, 2, 2, 0, 2, 0, 1, 2, 6
Offset: 1
Keywords
Examples
1^1 = 1 is not prime. 1^2+2^2 = 5 is prime. Thus a(1) = 2.
Links
- Derek Orr, Table of n, a(n) for n = 1..91
Crossrefs
Cf. A242927.
Programs
-
PARI
a(n)=for(k=1,500,if(ispseudoprime(sum(i=0,k-1,(n+i)^k)),return(k))) n=1;while(n<200,print1(a(n),", ");n+=1)
Comments