cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239737 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is a part or the number of numbers having multiplicity > 1 is a part.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 7, 10, 13, 21, 28, 38, 54, 77, 99, 137, 180, 236, 306, 398, 504, 644, 807, 1018, 1278, 1599, 1972, 2458, 3039, 3743, 4592, 5659, 6884, 8436, 10235, 12445, 15021, 18204, 21842, 26334, 31501, 37746, 44956, 53707, 63657, 75738, 89536, 106057
Offset: 0

Views

Author

Clark Kimberling, Apr 23 2014

Keywords

Examples

			a(6) counts these 7 partitions:  42, 411, 321, 3111, 2211, 21111, 111111.
		

Crossrefs

Programs

  • Mathematica
    z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] ==  &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]]
    Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}]  (* A241413 *)
    Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}]  (* A241414 *)
    Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *)
    Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *)
    Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *)
    Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)

Formula

a(n) + A241417(n) = A000041(n) for n >= 0.