This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239790 #40 Aug 28 2025 10:29:41 %S A239790 11,41,41,191,402131,6340271501 %N A239790 The smallest multidigit prime of a sequence of n consecutive primes such that their digit sums are also a sequence of n consecutive primes. %C A239790 a(7), if it exists, is larger than 2*10^14. - _Giovanni Resta_, Apr 03 2014 %C A239790 a(7) <= 101100010001001200110001. - _Jens Kruse Andersen_, Aug 28 2016 %C A239790 a(7) <= 1212030150560200001. - _Oscar Volpatti_, Aug 25 2025 %H A239790 Números y Algo Más, <a href="http://simplementenumeros.blogspot.mx/2014/03/1290-primos-cuya-suma-digital-dan-primos.html">Primos cuya suma digital dan primos</a> %H A239790 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_1229.htm">Puzzle 1229. Set of consecutive primes such that...</a>, The Prime Puzzles & Problems Connection. %H A239790 B. Sindelar, <a href="https://groups.yahoo.com/neo/groups/primenumbers/conversations/topics/25924">Two Sets of Consecutive Primes and their Sum of Digits Connection</a> [Broken link] %H A239790 Bill Sindelar, Jens Kruse Andersen, Marian Otremba, <a href="/A239790/a239790.txt">Two Sets of Consecutive Primes and their Sum of Digits Connection</a>, digest of 12 messages in primenumbers Yahoo group, Aug 26 - Aug 30, 2016. %e A239790 a(4)=191 because 191, 193, 197, 199 generates 11, 13, 17, 19. %e A239790 a(5)=402131 because 402131, 402133, 402137, 402139, 402197 generates 11,13,17,19,23. %o A239790 (UBASIC) %o A239790 10 P=7:KM=0:'puzzle 1290, Meller %o A239790 20 P=nxtprm(P):if P>2^32-20 then end %o A239790 30 gosub *K:if K<=KM then goto 20 %o A239790 40 print K,P,Q1:KM=K:goto 20 %o A239790 100 *K %o A239790 110 Z=P:gosub *SODZ %o A239790 120 if SODZ<>prmdiv(SODZ) then return %o A239790 130 K=1:Q=SODZ:Q1=Q %o A239790 140 Z=nxtprm(Z):gosub *SODZ %o A239790 150 if SODZ<>nxtprm(Q) then return %o A239790 160 K=K+1:Q=nxtprm(Q):goto 140 %o A239790 200 *SODZ:SODZ=0:L=alen(Z) %o A239790 210 for I=1 to L:D=val(mid(str(Z),I+1,1)) %o A239790 220 SODZ=SODZ+D:next I %o A239790 230 return %o A239790 (PARI) isok(p, n) = if ((p > 10) && isprime(p), my(v=vector(n)); v[1] = p; for (i=2, n, v[i] = nextprime(v[i-1]+1);); my(vs=vector(n, i, sumdigits(v[i]))); if (!isprime(vs[1]), return(0)); for (i=2, n, if (vs[i] != nextprime(vs[i-1]+1), return(0));); return(1);); %o A239790 a(n) = my(k=1); while (!isok(k, n), k++); k; \\ _Michel Marcus_, Aug 28 2025 %Y A239790 Cf. A007953, A046704, A240598. %K A239790 nonn,base,hard,more,changed %O A239790 1,1 %A A239790 _Carlos Rivera_, Mar 26 2014 %E A239790 a(6) from _Giovanni Resta_, Apr 03 2014